\qquad Pd \qquad Date \qquad

Slope-Intercept Form Systems of Equations

Alex's phone plan costs $\$ 12$ per month plus an additional $\$ 1$ for every 250 MB of data he uses. Kendra's phone plan costs $\$ 9$ per month plus an additional $\$ 2$ for every 250 MB of data she uses. Model Alex's and Kendra's phone plans with equations, tables, and graphs. Determine how many MB of data Alex and Kendra would have to use in a given month in order for their phone bill to be the same.

	Alex	Kendra	
Starting Point			
Rate of Change			
Slope-Int. Equation			
Alex			
X	Y		
		Kendra	

What do you notice about the graph?

What do you notice about the tables?

How can we check our answer (for how much data would their bills be the same) using the equations?

Key Ideas

What is a	linear equations form this.
of linear equations?	
What is the \qquad to a system?	Any \qquad that makes \qquad the equations in a system true is this.
How do we find a system's solution graphically?	Whereas a line represents all the solutions to one linear equation, the is the solution to both linear equations.
How do we find a system's solution using tables?	By starting at the y-intercept and following the pattern of the rate of change, eventually each table will show a point with the \qquad
How can we check the solution algebraically?	We can \qquad our values for x and y into each equation. If both equations remain true statements, then we have found the correct solution.

Solve the System by Making Tables and Graphing
Equation: $y=\frac{2}{3} x$
Equation: $y=2 x-4$

X	Y

X	Y

Solution:

What is the solution to the system of linear equations?

1) Solution: (,)

2) Solution: (,)

The following two tables represent a system of linear functions. Extend the tables to find the solution.
3)

x	y
-9	20
-2	24
5	28

Solution: (,)
4)

x	y
25	3
10	9
-5	15

x	y
-55	-9
-50	0
-45	9

Solution: ()

x	y
-26	20
-13	25
0	30

