Quadratic Functions - Standard Form $f(x)=a x^{2}+b x+c$
Steps to Graph

1) Find the vertex and the axis of symmetry using the formula:
2) Find 2 points on one "arm" of the parabola.
3) Use the axis of symmetry to reflect the points and make the parabola.

Ex. $1 f(x)=x^{2}-6 x+4$

x		y	$f(x)=y$	(x, y)

You Try $2 f(x)=-x^{2}+4 x-2$

x		y	$f(x)=y$	(x, y)

Can you figure out the vertex form of the function from the graph of You Try 2?
What is the a value?

What is the horizontal transformation?

What is the vertical transformation?

What is the vertex form of the quadratic function?

What is the vertex form of the quadratic function?
Ex. $3 f(x)=2 x^{2}-8 x+7$
$\underline{\text { You Try } 4} \quad y=-3 x^{2}+18 x-4$

1) What is the vertex of the graph of $y=-3 x^{2}+12 x+1$?
a. $(13,2)$
b. $(2,13)$
c. $(0,1)$
d. $(1,0)$
2) What direction will the graph of $y=-3 x^{2}+12 x+1$ open? What type of vertex will it have?
a. upwards, minimum
c. downwards, minimum
b. upwards, maximum
d. downwards, maximum
3) Match each function with the graph. EXPLAIN WHY YOU CHOSE EACH MATCH.
I. $y=-x^{2}-6 x$
II. $y=-x^{2}+6$
III. $y=x^{2}-6$
IV. $y=x^{2}+6 x$
A.

B.

C.

D.

