Name_				Pd	Date
Graphing $y = ax^2 + k$			(Vertical Transformations)		
<u>Ex. 1</u>					
y = 3x	2	1			7
x		у	f(x) = y	(x , y)	
					-
					_
v - 3r	² – 2				

	x		у	f(x) = y	(x, y)

Section 2.Q.2

How is the graph of $y = 3x^2 - 2$ different from the graph of $y = 3x^2$?

- a. It is shifted 2 units up.b. It is shifted 2 units down.
- c. It is shifted 2 units to the right.
- d. It is shifted 2 units to the left.

<u>You Try 2</u>

How is the graph of $y = 2x^2 + 1$ different from the graph of $y = 2x^2$?

- a. It is shifted 1 unit up.b. It is shifted 1 unit down.
- c. It is shifted 1 unit to the right.
- d. It is shifted 1 unit to the left.

You Try 3 How is the graph of $y = 4x^2 + 3$ different from the graph of $y = 4x^2 - 1$?

- a. It is shifted 4 units up.b. It is shifted 3 units up.
- c. It is shifted 4 units down.d. It is shifted 1 unit down.

(Horizontal Transformations)

Graphing $y = (x - h)^2$ Ex. 4

$y = (x - 2)^2$					
x		у	f(x) = y	(<i>x</i> , <i>y</i>)	

Where is the axis of symmetry (AOS)?

What is the vertex?

<u>Ex. 5</u> $v = r^2$ (parent function)

j n (parene raneeren)					
x	y f(x)		f(x) = y	(x , y)	

Where is the axis of symmetry (AOS)?

What is the vertex?

Where is the axis of symmetry (AOS)?

What is the vertex?

7) How is the graph of $y = (x - 2)^2$ different from the parent function?

8) How is the graph of $y = (x + 2)^2$ different from the parent function?

9) How is the graph of $y = (x - 2)^2$ different from the graph of $y = (x + 2)^2$?

Key Ideas:

Vertical transformations are from adding (_____) or subtracting (_____) k AFTER the x^2 . Horizontal transformations are from the sign of the h WITHIN the x^2 .

 $(x - h)^2$ \rightarrow $(x - +h)^2$

