\qquad Date
Graphing $y=a x^{2}+k$
(Vertical Transformations)
Ex. 1
$y=3 x^{2}$

x		y	$f(x)=y$	(x, y)

$y=3 x^{2}-2$

x		y	$f(x)=y$	(x, y)

How is the graph of $y=3 x^{2}-2$ different from the graph of $y=3 x^{2} ?$

a. It is shifted 2 units up.
c. It is shifted 2 units to the right.
b. It is shifted 2 units down.
d. It is shifted 2 units to the left.

You Try 2

How is the graph of $y=2 x^{2}+1$ different from the graph of $y=2 x^{2} ?$
a. It is shifted 1 unit up.
c. It is shifted 1 unit to the right.
b. It is shifted 1 unit down.
d. It is shifted 1 unit to the left.

You Try 3
How is the graph of $y=4 x^{2}+3$ different from the graph of $y=4 x^{2}-1$?
a. It is shifted 4 units up.
c. It is shifted 4 units down.
b. It is shifted 3 units up.
d. It is shifted 1 unit down.

Graphing $y=(x-h)^{2}$
Ex. 4
$y=(x-2)^{2}$

x		y	$f(x)=y$	(x, y)

Where is the axis of symmetry (AOS)?

What is the vertex?
Ex. 5
$y=x^{2}$ (parent function)

x		y	$f(x)=y$	(x, y)

Where is the axis of symmetry (AOS)?

What is the vertex?
(Horizontal Transformations)

Ex. 6
$y=(x+2)^{2}$

x		y	$f(x)=y$	(x, y)

Where is the axis of symmetry (AOS)?

What is the vertex?
7) How is the graph of $y=(x-2)^{2}$ different from the parent function?
8) How is the graph of $y=(x+2)^{2}$ different from the parent function?
9) How is the graph of $y=(x-2)^{2}$ different from the graph of $y=(x+2)^{2}$?

Key Ideas:
Vertical transformations are from adding (\qquad) or subtracting (\qquad) k AFTER the x^{2}.
Horizontal transformations are from the sign of the h WITHIN the x^{2}.
$(x--h)^{2} \rightarrow$
$(x-+h)^{2} \rightarrow$

