\qquad Date

Quadratic Functions

The simplest quadratic function is the quadratic parent function, \qquad or \qquad .

\boldsymbol{x}		\boldsymbol{y}	$\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{y}$	$(\boldsymbol{x}, \boldsymbol{y})$
-2				
-1				
0				
1				
2				

What do you notice about the graph?

Key Vocabulary:
The \qquad is the \qquad of the graph.

The \qquad is the line dividing the parabola into \qquad .

Graphing $y=a x^{2}$
Ex. $1 y=\frac{1}{3} x^{2}$

x		y	$f(x)=y$	(x, y)

What are good values to choose for x ? Why?

How do we get the other side of the parabola?

You Try $2 y=-2 x^{2}$

x		y	$f(x)=y$	(x, y)

What is the ordered pair of the vertex?

How does the " a " value affect the quadratic parent function? $f(x)=a x^{2}$

Graph	Opens Where?	Type of Vertex?	Pattern?	Sign of a ?
Ex. 1				
You Try 2				

Graph	Wider vs. Narrower than $f(x)=x^{2}$	Fraction vs. Integer for $a ?$
Ex. 1		
You Try 2		

Key Idea

- The a value affects the
and
\qquad

Match the function with its description in comparison to the parent function.

1) $y=3 x^{2}$
a. opens upward \& wider
2) $y=\frac{1}{4} x^{2}$
b. opens downward \& wider
3) $y=-\frac{2}{3} x^{2}$
c. opens upward \& narrower
4) $y=-4 x^{2}$
d. opens downward \& narrower
