\qquad Pd \qquad Date
Scatter Plots on the Graphing Calculator
Using the data from Mrs. Phillips' first grade class, we will use the graphing calculator to display the data and determine the line of best fit.

Clear the memory of your calulator before starting.

1. Enter the data. Choose STAT and select 1: Edit... Enter the height data under L1 and the weight data under L2.

To clear Mem: $2^{\text {nd }} \rightarrow+\rightarrow 7 \rightarrow 1 \rightarrow 2$
Turn on Diagnostics: $2^{\text {nd }} \rightarrow 0$
Scroll to DiagnosticOn Hit Enter

Name	Height(L1)	Weight(L2)	Name	Height(L1)	Weight(L2)
Lisa	44	47	Meg	48	62
Simone	50	57	Mara	51	47
Meredith	38.5	32	Steph	53	65
Penny	39	42	Callie	50.5	49
Sheila	41	36	Cynthia	46.5	52
Tara	45.5	49	Joy	45	43

Tips:
Make sure all of the data lines up properly.
If you need to delete an entry use DEL. To insert a missing entry use INS (2nd DEL).

2. Plot the data.

Choose STAT PLOT (2nd $Y=$)
Select 1: Plot 1...
Turn the graph On. (highlight On and hit Enter)
Note the other settings, we will not change these.
ZOOM 9: ZoomStat
3. Calculate the Line of Best Fit

Push the STAT button. This time toggle right to CALC in the menu.
Select 4: LinReg $(a x+b)$ This will calculate an equation in the form $y=m x+b$. Hit ENTER.
(If you did everything correctly so far, you should have gotten $a=1.652$ and $b=-27.573$).
4. Plot the Line of Best Fit

Go to $Y_{1}=$ and then hit VARS.
Choose 5: Statistics...
Toggle right to EQ and select 1: RegEQ and GRAPH.
You may also enter the equation manually, but it will not be as accurate in most cases.

5. Trace the Line of Best Fit

Hit TRACE. Use the left and right arrows to bounce from point to point.
Use the down arrow to toggle onto the line (not the points).
Answer: Round to the tenth.
How much would you expect a first grade girl to weigh for each height given below?
40in \qquad lbs

42in \qquad lbs

45in \qquad lbs

48in \qquad lbs

50in \qquad lbs

53in \qquad lbs
hint: Discover the TABLE function on your own.

Example 2

Latitude and Average Daily Temperature in July for $\mathbf{1 0}$ world cities

Name	Latitude ($\left.{ }^{\circ} \mathrm{N}\right)$	July Temp. $\left({ }^{\circ} \mathbf{C}\right)$	Equation for Line of Best Fit (round to thousandths -3 places after decimal):
Oslo	59	7	
Berlin	52	18.5	
London	51	17	
Vancouver	49	17	What would be the expected July temperature
Tunis	37	26	at each of the given latitudes below?
Tomsk	56	18	a. $25^{\circ} \mathrm{N}$
Kiev	50	20	
Coppermine	67	10	b. $54^{\circ} \mathrm{N}$
Rome	41	24	
Salah	27	37	c. $70^{\circ} \mathrm{N}$

What is the correlation coefficient?

- a number between -1 and 1 that tells how well the equation "fits" the data
- good fit/strong correlation: \qquad
- poor fit/weak correlation: \qquad
What is the correlation coefficient for the equation in Example 2?
Do we have a strong or weak correlation?

Example 3

Latitude and Average Daily Rainfall in July for 10 world cities

Name	Latitude ($\left.{ }^{\circ} \mathbf{N}\right)$	July Rainfall (mm)	
Oslo	59	73.6	Equation for Line of Best Fit (round to
Berlin	52	57.4	
London	51	59.5	
Vancouver	49	31.3	
Tunis	37	3.3	What would be the expected July rainfall at each
Tomsk	56	73.6	of the given latitudes below?
Kiev	50	77.1	d. $25^{\circ} \mathrm{N}$
Coppermine	67	31.9	e. $54^{\circ} \mathrm{N}$
Rome	41	16.3	

What is the correlation coefficient for the equation in Example 3?

How does the correlation coefficient in Ex. 3 compare to the correlation coefficient in Ex. 2?

