\qquad
\qquad Date

Solving Equations and Inequalities

Equation	Steps	Inequality
The sum of three times a number and five is fourteen. $\begin{array}{r} 3 x+5=14 \\ -5-5 \\ \hline \frac{3 x}{3}=\frac{9}{3} \\ x=3 \end{array}$	For Two-Step Solutions After translating, 1) \qquad 2) \qquad For inequalities, graph solutions. Open: \qquad Closed: \qquad	The difference of twice a number and three is less than seven.
$\begin{gathered} -4(2 x+1)-4 x=8 \\ -8 x-4-4 x=8 \\ -12 x-4=8 \\ +4+4 \\ \hline \frac{-12 x}{-12}=\frac{12}{-12} \\ x=-1 \end{gathered}$	For Multi-Step Solutions What must you do FIRST? What type of operations do you use to isolate the variable? For inequalities, what happens when you multiply or divide by a negative number?	$3(t-1)-4 t \geq-5$
The sum of four times a number and three is the same as the difference of two times a number and eleven. $\begin{aligned} 4 x+3 & =2 x-11 \\ -2 x & -2 x \\ \hline 2 x+3 & =-11 \\ \frac{-3}{} & -3 \\ \frac{2 x}{2} & =\frac{-14}{2} \\ x & =-7 \end{aligned}$	For Variables on Both Sides How do we get all the variables to the same side?	The difference of five times a number and one is greater than double the sum of a negative number and three.

Special Solutions - How many solutions does the equation have?

1) $2(k-3)-k=1+k-7$
2) $5 t+1=5(t-1)+3$
3) $3(2 x-5)=x+5(x+3)$
4) $m+3=3(2 m+1)-5 m$

Key Ideas:

- When the variables cancel out, you get special solutions.
- Identities (true statements) have \qquad .
- False statements have \qquad -.

