Name	Pd	Date	Section 1.D.2
Solving 1-Step Inequalities	s with Multiplication,	Division, & Frac	tions
Let's Conduct a Mathematica	-		
We know that the process of statement by some number			ying both sides of a mathematical It to be 1 .
		_	
Recall:			ultiply by a negative number when inequality, not an equation?
$-\frac{x}{4} = 2$	4 > 2	2	
$-4 \cdot -\frac{x}{4} = 2 \cdot -4$	$-4 \cdot 4 > 2$	$2 \cdot -4$	
$\frac{-4}{-4}x = -8$	-16 > -	-8	
	Is this a still a tru	e statement?	
1x = 8 $x = 8$	How should the c	comparison be st	ated to be true?
Key Ideas When you multiply both sides of an inequality by a,			
you change the meaning of the comparison, so you must!			
**Since dividing is the same as,			
when you divide both sides of an inequality by a,			
you must also!			

Complete the examples in your group by filling in the correct symbol.Example 1

<u>Example 1</u>	Example 2
-3n > -12	$\frac{b}{2} \le -9$
$\frac{-3n}{-3} \qquad \frac{-12}{-3}$ $n \qquad 4$	$2 \cdot \frac{b}{2} - 9 \cdot 2$ $b - 18$
Did you reverse the symbol? Why or why not?	Did you reverse the symbol? Why or why not?
Check to make sure your choice is correct.	Check to make sure your choice is correct.

<u>Group You Trys</u>

REMEMBER!

- The sign of your final answer does NOT affect the inequality symbol.
- What matters is the sign of the number YOU multiply/divide both sides by.
- Choose EASY numbers to substitute when you check your answer! (0, 1, multiples of 10, etc.)

• Cn	• Choose EASY numbers to substitute when you check your answer! (0, 1, multiples of 10, etc.)				
Solve Using Algebra	$-\frac{c}{3} < 2$	4x > -32			
Check Your Solution					
Graph					
Solve Using Algebra	$-2f \le 10$	$7 < -\frac{d}{3}$			
Check Your Solution					
Graph					

Solving 1-Step Inequalities with Addition & Subtraction No tricks! Simply use inverse operations: ______ to undo ______ and _____ to undo ______.

<u>Ex. 1</u> x + 2 > 3 <u>Ex. 2</u> $-4 + y \le 3$ <u>You Try</u> $k - 7 \ge -10$