\qquad Pd \qquad Date \qquad

Solving 1-Step Inequalities with Multiplication, Division, \& Fractions

Let's Conduct a Mathematical Experiment
We know that the process of isolating a variable can include multiplying both sides of a mathematical statement by some number in order to get our variable's coefficient to be 1.

Recall:
So, what happens if we want to multiply by a negative number when the mathematical statement is an inequality, not an equation?
$-\frac{x}{4}=2$
$-4 \cdot-\frac{x}{4}=2 \cdot-4$
$\frac{-4}{-4} x=-8$
$1 x=8$
$x=8$

$$
\begin{aligned}
4 & >2 \\
-4 \cdot 4 & >2 \cdot-4 \\
-16 & >-8
\end{aligned}
$$

Is this a still a true statement?

How should the comparison be stated to be true?

Key Ideas

When you multiply both sides of an inequality by a \qquad
you change the meaning of the comparison, so you must \qquad !
**Since dividing is the same as \qquad
when you divide both sides of an inequality by a \qquad
you must also !

Complete the examples in your group by filling in the correct symbol.

Example 1

$$
\begin{array}{cc}
-3 n>-12 \\
\frac{-3 n}{-3} & \frac{-12}{-3} \\
n & 4
\end{array}
$$

Example 2

$$
\begin{array}{cc}
\frac{b}{2} \leq-9 \\
2 \cdot \frac{b}{2} & -9 \cdot 2 \\
b & -18
\end{array}
$$

Did you reverse the symbol? Why or why not?

Check to make sure your choice is correct.
Did you reverse the symbol? Why or why not?

Check to make sure your choice is correct.

REMEMBER!

- The sign of your final answer does NOT affect the inequality symbol.
- What matters is the sign of the number YOU multiply/divide both sides by.
- Choose EASY numbers to substitute when you check your answer! (0,1 , multiples of 10 , etc.)

Solve Using Algebra	$-\frac{c}{3}<2$	$4 x>-32$
Check Your Solution		
Graph		
Solve Using Algebra	$-2 f \leq 10$	
Graph		
Check		

Solving 1-Step Inequalities with Addition \& Subtraction
No tricks! Simply use inverse operations: \qquad to undo \qquad and \qquad to undo \qquad .
Ex. $1 x+2>3$
Ex. 2
$-4+y \leq 3$
You Try $\quad k-7 \geq-10$

