Name \qquad Pd \qquad Date \qquad Section 1.C. 2

Solve 2-Step Equations

Scenario	Anticipate the Answer	Write and Solve Algebraic Equations
George starts his day with $\$ 5$. He earns \$7 per hour at his job. At the end of the day, he has $\$ 47$. How many hours did he work?		
Ms. Draper has a pack of pencils. She splits the pack into 4 groups. Then she takes away 2 pencils from a group, and that group is left with 5 pencils. How many pencils were originally in the pack?		

Model Equations with Algebra Tiles

	3)$\frac{x}{2}+4=1$ 	What's the constant term?
		What's the coefficient?

Solve Equations with Fractions

Example	Words	You Try
4) $-\frac{4}{5} x=16$	What fraction do we have? How can we cancel the fraction so the variable's coefficient will be one?	6) $-\frac{3}{4} y=9$
5) $4-\frac{2}{3} b=-2$	What's the constant term? How do we make it zero? What's the coefficient? How do we make it one?	7) $\frac{5}{6} c-6=14$

Key Ideas

We use inverse operations to make our equation become \qquad _.

FIRST: We use \qquad to make the constant term equal zero.

SECOND: We \qquad to make the variable's coefficient equal one.

If we have fractions, we \qquad

To do that, we

