\qquad Pd \qquad Date

Define Algebraic Equations

An algebraic equation is a mathematical statement that says that the algebraic expression on one side of an equals sign HAS THE SAME VALUE AS the expression on the other side of the equals sign.

Solve 1-Step Equations: Addition \& Subtraction

Scenario	Anticipate the Answer	Write and Solve Algebraic Equation
Sam buys a t-shirt. He		
has a coupon for \$5 off.		
He spent \$8. What was		
the original price of the		
t-shirt?		
Sarah has 2 apples. Her		
uncle brings home a bag		
of apples. Now she has 7		
apples. How many		
apples were in the bag?		
Michael owes Derek \$7.		
After he gets paid to dog-		
walk, Michael pays his		
debt and has \$8 left.		
How much did Michael		
get paid?		

What do you notice?
**To get rid of positives, use \qquad .
**To get rid of negatives, use \qquad .

Example	Words	You Try
1$) \quad-7=r+16$	What's happening to the variable? How do we undo that?	$4) \quad 5=n+9$
2) $-4+x=1$	What's happening to the variable? How do we undo that?	$5) \quad-2+c=7$
3) $y-(-3)=8$	What's happening to the variable? How do we undo that?	6)

Solve 1-Step Equations: Multiplication \& Division

Scenario	Anticipate the Answer	Write and Solve Algebraic Equation
Harry earns \$8 for each		
hour he works at his job.		
He earned \$48 today.		
How many hours did he		
work?		

What do you notice?
**To undo multiplication, use \qquad -
**To undo division, use \qquad .

Example		Words
7) $3 h=-9$	What's happening to the variable? How do we undo that?	
8) $\frac{n}{-5}=2$	What's happening to the variable? How do we undo that?	11) $\frac{d}{4}=-8 x=20$
9) $-4=\frac{h}{6}$	What's happening to the variable? How do we undo that?	12) $8=\frac{y}{-7}$

Key Ideas:

Solving an equation for a variable means \qquad -.

To do that, we use the \qquad on \qquad sides.

Addition and subtraction \qquad each other. Multiplication and division \qquad each other.

We want the constant term to equal \qquad .

We want the variable term to have a coefficient of \qquad .

