Opening Checklist (15 points)	Initials	
1. I had my math notes folder and daily papers ON MY DESK by the time class began.	$/ 5$	
2. I had been using a SHARPENED pencil by the time class began.	$/ 5$	
3. I had FINISHED copying the objective and had STARTED defining the Word of the Day by the time class began.		

Do Now (10 points) - Copy the Objective and define the Word of the Day.
Initials
Obj:

Word of
the Day
\& Defn:

Skill Review (10 points) - Show ALL work necessary. Initials

Notes/Activity (20 points)	Initials	
Completed Notes Page/Activity	$/ 10$	
Participated Productively \& Earned the Appropriate Number of Teacher Checkmarks		
Exit Ticket (10 points) - Complete INDEPENDENTLY and SILENTLY.		

What is the degree of the monomial?

1) $5 x$
2) $7 y^{2} z^{10}$
3) 4
4) $3 a b^{3}$

Find the sum. Write your final answer in standard form. Name the polynomial by degree and \# of terms.
5) $\left(5 x^{2}-3 x+7 x\right)+\left(9 x^{2}+2 x^{2}+7 x\right)$
6) $\left(3 z^{3}-4 z+7 z^{2}\right)+\left(8 z^{2}-6 z-5\right)$
7) The number of students at East High School and the number of students at Central High School over a 10-year period can be modeled by the following polynomials.

East: $-11 x^{2}+133 x+1200$
Central: $-7 x^{2}+95 x+1100$
What polynomial models the total number of students at both high schools? Name the polynomial.

Find the difference. Write your final answer in standard form. Name the polynomial by degree and \# of terms.
8) $\left(6 y^{3}-4 y^{2}-2\right)-\left(6 y^{3}-4 y^{2}-y+1\right)$
9) $\left(-9 r^{2}+2 r-1\right)-\left(5 r^{2}+r+8\right)$
10) The area of a rectangular blanket can be modeled by the polynomial $3 x^{2}-x+2$. A square is cut out of the blanket. The square can be modeled by the polynomial $2 x^{2}+4 x+1$. What polynomial models how much of the blanket is left? Name the polynomial.

Exit Ticket: Find the sum or difference. Name the polynomial. (maybe just do the difference for time's sake)
$\left(3 x^{2}+6 x-1\right)+\left(4 x^{2}+5 x+9\right) \quad\left(8 x^{3}-5 x+1\right)-\left(x^{2}+4\right)$

