\qquad Pd \qquad Date \qquad
Polynomial Vocabulary
A \qquad is a real number, a variable, or a product of a real number and one or more variables with whole-number exponents.
Examples: 18
Z
$-4 x^{2}$
$2.5 x y^{3}$
$\frac{a}{3}$

The \qquad of a monomial is the sum of the \qquad on its variables.

Example	Degree	Why?
$5 x$		
$6 x^{3} y^{2}$		
4		

You Try: What is the degree of the monomial?

1) $8 x y$
2) $-7 y^{4} z^{3}$
3) 11

A \qquad is a monomial or a sum of monomials.

Standard form means that \qquad .

$$
3 x^{4}+5 x^{2}-7 x+1
$$

Simplify the expression and write in standard form.
4) $6 x+12-2\left(x^{2}+3 x^{5}-3\right)$
5) $-x^{4}+2-3 x-\left(x^{4}+2 x^{3}+x^{2}\right)$

Classifying You can name a polynomial based on its degree and the number of monomials it contains.

Polynomial	Degree	Name Using Degree	Number of Terms	Name Using Number of Terms
6				
$5 x+9$				
$4 x^{2}+7 x+3$				
$2 x^{3}$				
$8 x^{4}-2 x^{3}+3 x$				

Write the polynomial in standard form. Name the polynomial based on its degree and number of terms.
6) $3 x+4 x^{2}$
7) $4 x-1+5 x^{3}+7 x$

Adding \& Subtracting Polynomials
8) The number of overnight stays (in thousands) in U.S. National Park Service campgrounds and in the backcountry of the national park system over a 5-yr period can be modeled by the following polynomials:

Campgrounds: $-7.1 x^{2}-180 x+5800$
Backcountry: $21 x^{2}-140 x+1900$

What polynomial models the total number of overnight stays (in thousands) in both campgrounds and backcountry? Name the polynomial.
9) The population of a large high school can be modeled by the polynomial $2 c^{2}+7 c-1$. The population of English Language Learners at the high school can be modeled by the polynomial $3 c^{3}-c+5$. What polynomial can model the population that is not ELL? Name the polynomial.

