\qquad Pd \qquad Date \qquad
Number Properties

Property	Addition	Multiplication
Commutative:	$a+b=b+a$	$a \cdot b=b \cdot a$
	Ex.	Ex.
Associative:	$(a+b)+c=a+(b+c)$	$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
	Ex.	Ex.
Identity:	$a+0=a$	$a \cdot 1=a$
	Ex.	Ex.
Properties to Get Zero:	Inverse Property of Addition $a+(-a)=0$	Zero Property of Multiplication $a \cdot 0=0$
	Ex.	Ex.
Property to Get the Opposite Sign:		Multiplication Property of -1 $-1 \cdot a=-a$
		Ex.

Matching

1. Associative Property of Addition
2. Associative Property of Multiplication
3. Commutative Property of Addition
4. Commutative Property of Multiplication
5. Identity Property of Addition
6. Identity Property of Multiplication
7. Multiplication Property of -1
8. Zero Property of Multiplication
a. $15 y+0=15 y$
b. $7 b \cdot 2=2 \cdot 7 b$
c. $(c \cdot 3) \cdot 5=c \cdot(5 \cdot 3)$
d. $6 x+5 y=5 y+6 x$
e. $-2 a \cdot 1=-2 a$
f. $(g+11 h)+9 h=g+(11 h+9 h)$
g. $7 k \cdot 0=0$
h. $-15 m \cdot(-1)=15 m$
i. $-9 p+9 p=0$

Parts of an Algebraic Expression
Term: Any piece of an algebraic expression that is being

Constant Term:
A term that is only a

$$
4 x^{2}+2 x-5+6 x^{2}-7 x+1
$$

Constant Term:
A term that is only a
\qquad . Its value depends on the \qquad .

Its value \qquad
\qquad . Coefficient:

Variable:

Circle the coefficients and underline the variables.

$$
4 x^{2}+2 x-5+6 x^{2}-7 x+1
$$

Like Terms: Terms with the same
and

$$
4 x^{2}+2 x-5+6 x^{2}-7 x+1
$$

the same \qquad .
\qquad these terms we are able to
\qquad by

Why do we care about like terms?

Terrance gets paid different hourly rates at his jobs. At Charlie's Cheeseburgers, he is paid c dollars per hour. At Wally's Waffles, he is paid w dollars per hour. On Friday, he works 6 hours at CC and 3 hours at WW. On Saturday, he works 2 hours at CC and 7 hours at WW. On Sunday, he works 4 hours at CC and 1 hour at WW. Write an algebraic expression for how much Terrance will get paid for these 3 days of work.

Evaluate your algebraic expression for hourly rates of $c=7$ and $w=9$.

