Name_____Pd___Date_____Section 1.A.3Example 1 - Bacteria Growth

The video shows bacteria doubling every second. Create a table for the number of bacteria versus time.

High-Speed		
Time (sec)	# of Bacteria	

Real-Time: 1sec = 20min

Time (min)	# of Bacteria	

Time (hr)	# of Bacteria	

Key Ideas for Linear, Quadratic, & Exponential Graphs

	Linear	Quadratic	Exponential
Shape			
Patterns in the Tables			

Example 2 - Below are three stories about the population of a city over a period of time and four population-versus-time graphs. <u>Two</u> of the stories each correspond to a graph. Match the two graphs and the two stories.

Story 1: The population size grows at a constant rate for some time, then doesn't change for a while, and then grows at a constant rate once again.

Story 2: The population size grows somewhat fast at first, and then the rate of growth slows.

Story 3: The population size declines to zero.

Write stories for the two other graphs. Create a graph for the 3rd story.