\qquad Pd \qquad Date

Example 1 - Bacteria Growth

The video shows bacteria doubling every second. Create a table for the number of bacteria versus time.
High-Speed

Time (sec)	\# of Bacteria

Real-Time: $1 \mathrm{sec}=20 \mathrm{~min}$

Time (min)	\# of Bacteria

Real-Time: $60 \mathrm{~min}=1 \mathrm{hr}$

Time (hr)	\# of Bacteria

time (hours)

Key Ideas for Linear, Quadratic, \& Exponential Graphs

	Linear	Quadratic	Exponential
Shape			
Patterns in the Tables			

Example 2 - Below are three stories about the population of a city over a period of time and four population-versus-time graphs. Two of the stories each correspond to a graph. Match the two graphs and the two stories.

Story 1: The population size grows at a constant rate for some time, then doesn't change for a while, and then grows at a constant rate once again.

Story 2: The population size grows somewhat fast at first, and then the rate of growth slows.

Story 3: The population size declines to zero.
a)

b)

Write stories for the two other graphs. Create a graph for the $3^{\text {rd }}$ story.

